U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

LEVEL II BRIDGE SCOUR ANALYSIS FOR STRUCTURE 124000901100 ON ROUTE SC 9, CROSSING FISHING CREEK IN CHESTER COUNTY, SOUTH CAROLINA

By Andy W. Caldwell and Michael G. Zalants

Prepared in cooperation with the SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

Columbia, South Carolina 1994

П
_

UNIT ABBREVIATIONS

cubic foot per second	ft ³ /s
feet per second	ft/s
foot	ft
mile	mi
millimeter	mm
square foot	ft ²
square mile	mi^2

OTHER ABBREVIATIONS

downstream	D/S
upstream	U/S
flood plain	f/p
median diameter of bed material	D_{50}
Water-Surface Profile computation model	WSPRO
South Carolina Department of Transportation	SCDOT

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical

Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order
level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

			[] []
			<u> </u>
		٠.	
	\		П
			. []
·			

Level II bridge scour analysis for structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina

by Andy W. Caldwell and Michael G. Zalants

This report provides the results of the detailed Level II analysis of scour potential at structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina (figure 1 in pocket; figures 4-7). The site is located in the Piedmont physiographic province near the town of Fort Lawn in the eastern part of Chester County. The drainage area for the site is 246 mi², and is a predominantly rural drainage basin with little development in recent years. In the vicinity of the study site, the land is covered by moderate woods consisting of hardwoods and a pasture on the downstream left flood plain.

In the study area, Fishing Creek has a meandering channel with a slope of approximately 0.00037 ft/ft (2.0 ft/mi), an average channel top width of 107 ft and an average channel depth of 11.7 ft. The predominant channel bed material is sand (D_{50} is 0.97 mm) and the channel banks consist of a silty sand (D_{50} is 0.31 mm). In general, the banks have moderate woody vegetative cover and were noted to be relatively stable at the time of the Level I and Level II site visits, July 19, 1990, and August 3 and September 2, 1993, respectively.

The Route SC 9 crossing of Fishing Creek is a 445-ft-long, two-lane bridge consisting of one 50-ft, two 40-ft, and nine 35-ft concrete spans, with the original structure supported by concrete piles and the widened part of the structure supported by concrete pile bents with spillthrough abutments at each end of the bridge. The left abutment is protected by riprap but the riprap at the right abutment has slumped due to road drainage. In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream. Additional details describing conditions at the site are included in the Scour Report Summary.

Scour depths were computed using engineering judgement and the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993) and the Transportation Research Board Draft Paper, "Evaluating scour at bridges using WSPRO" (Arneson and others, 1992). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 through 5 and a graph of the scour depths is shown on figure 2.

undermining dep	the pile ti	ps occu	irs for th	e 500-yea	r dischar	ge. The	s at bent 7 maximun	ı
It should be n					: (docket n	umber 12	407) show	7
subsurface rock t information, see	hat could aff	ect the s	cour dept	hs shown	in this stu	dy. For m	ore	
•								
		,	•					
							• .	
								•
			,					
					•			
		•						
							,	
						•		
				,				

.

Table 1. --Remaining pile/footing penetration at piers/bents for the 100-year discharge at structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina

Remaining pile/footing penetration (feet)		4.8	2.4	4.4	8.6	9.2	4.9	3.1	4.6	6.8	4.9	5.4
Elevation of scour, USGS datum (feet)		70.2	0.99	64.9	65.8	66.4	61.2	59.9	61.8	63.1	62.4	62.6
Total 4 scour depth (feet)	er second	9.0	. 9.1	9.2	9.1	9.1	3.3	3.3	11.8	11.8	11.8	11.8
Ground elevation at pier/bent, USGS datum (feet)	100-year discharge is 24,800 cubic feet per second	79.2	75.1	74.1	74.9	75.5	64.5	63.2	73.6	74.9	74.2	74.4
Pile tip/ footing elevation, USGS datum (feet)	discharge is 24,8	65.4	63.6	60.5	57.2	57.2	56.3	56.8	57.2	56.3	57.5	57.2
Pile tip/3 footing elevation, SCDOT datum (feet)	100-year	465.9	464.1	461.0	457.7	457.7	456.8	457.3	457.7	456.8	458.0	457.7
Station from ² left end of bridge (feet)		35	70	105	140	175	215	265	305	340	375	410
Pier/bent ¹ number		8	7	9	5	D	ບ	В	¥	4	3	2

¹ Pier/bent number corresponds to the South Carolina Department of Transportation (SCDOT) bridge plans.

NOTE: The SCDOT bridge plan borings (docket number 12.407) show subsurface rock that could affect the scour depths shown in the above table. For more information, see the SCDOT plans in report pocket.

² Stations are determined from left to right looking downstream.

³ Pile tip/footing elevations obtained from the SCDOT bridge plans. The maximum elevation at each pier/bent is used.

⁴ Total scour depth is the sum of the contraction and pier/bent scour depths.

Table 2. --Remaining pile/footing penetration at piers/bents for the 500-year discharge at structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina

Remaining ⁵ pile/footing penetration (feet)		9.0-	-3.0	6.0-	3.2	3.8	4.6	2.8	-1.8	4.0	-1.5	-1.0
Elevation of scour, USGS datum (feet)		64.8	9.09	59.6	60.4	61.0	6.09	59.6	55.4	56.7	56.0	56.2
Total ⁴ scour depth (feet)	r second	14.4	14.5	14.5	14.5	14.5	3.6	3.6	18.2	. 18.2	18.2	18.2
Ground elevation at pier/bent, USGS datum (feet)	500-year discharge is 36,000 cubic feet per second	79.2	75.1	74.1	74.9	75.5	64.5	63.2	73.6	74.9	74.2	74.4
Pile tip/ footing elevation, USGS datum (feet)	discharge is 36,(65.4	63.6	60.5	57.2	57.2	56.3	56.8	57.2	56.3	57.5	57.2
Pile tip/ 3 footing elevation, SCDOT datum (feet)	500-year	465.9	464.1	461.0	457.7	457.7	456.8	457.3	457.7	456.8	458.0	457.7
Station from ² left end of bridge (feet)		35	70	105	140	175	215	265	305	340	375	410
Pier/bent ¹ number		8	7	9	5	Ā	ပ	В	Ą	4	ю	2

¹ Pier/bent number corresponds to the South Carolina Department of Transportation (SCDOT) bridge plans.

NOTE: The SCDOT bridge plan borings (docket number 12.407) show subsurface rock that could affect the scour depths shown in the above table. For more information, see the SCDOT plans in report pocket.

² Stations are determined from left to right looking downstream.

³ Pile tip/footing elevations obtained from the SCDOT bridge plans. The maximum elevation at each pier/bent is used.

⁴ Total scour depth is the sum of the contraction and pier/bent scour depths.

 $^{^5}$ A negative number signifies undermining of pile tip/footing.

Table 3. -- Cumulative scour depths at piers/bents for the 100-year discharge at structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Contraction scour depth (feet)	Pier/bent scour depth without debris (feet)	Total ³ scour depth without debris (feet)
	100-year dischar	ge is 24,800 cub	ic feet per second	
8	35	6.5	2.5	9.0
7	70	6.5	2.6	9.1
6	105	6.5	2.7	9.2
5	140	6.5	2.6	9.1
D	175	6.5	2.6	9.1
C	215	04	3.3	3.3
В	265	04	3.3	3.3
A	305	9.1	2.7	11.8
4	340	9.1	2.7	11.8
3	375	9.1	2.7	11.8
2	410	9.1	2.7	11.8

¹ Pier/bent number corresponds to the South Carolina Department of Transportation (SCDOT) bridge plans.

NOTE: The SCDOT bridge plan borings (docket number 12.407) show subsurface rock that could affect the scour depths shown in the above table. For more information, see the SCDOT plans in report pocket.

NOTE: The pier and contraction scour equations used in this scour analysis were those recommended in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

² Stations are determined from left to right looking downstream.

³ Total scour depth is the sum of the contraction and pier/bent scour depths.

⁴ The calculated contraction scour is a negative value, but was set equal to zero to reflect a more reasonable estimate of scour during peak flood conditions.

Table 4. -- Cumulative scour depths at piers/bents for the 500-year discharge at structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Contraction scour depth (feet)	Pier/bent scour depth without debris (feet)	Total ³ scour depth without debris (feet)
	500-year discharg	ge is 36,000 cub	ic feet per second	L
8 .	35	11.2	3.2	14.4
7	70	11.2	3.3	14.5
6	. 105	11.2	3.3	14.5
5	140	11.2	3.3	14.5
D	175	11.2	3.3	14.5
С	215	04	3.6	3.6
В	265	04	3.6	3.6
A	305	15.1	3.1	18.2
4	340	15.1	3.1	18.2
3	375	15.1	3.1	18.2
2	410	15.1	3.1	18.2

¹ Pier/bent number corresponds to the South Carolina Department of Transportation (SCDOT) bridge plans.

NOTE: The SCDOT bridge plan borings (docket number 12.407) show subsurface rock that could affect the scour depths shown in the above table. For more information, see the SCDOT plans in report pocket.

NOTE: The pier and contraction scour equations used in this scour analysis were those recommended in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

² Stations are determined from left to right looking downstream.

³ Total scour depth is the sum of the contraction and pier/bent scour depths.

⁴ The calculated contraction scour is a negative value, but was set equal to zero to reflect a more reasonable estimate of scour during peak flood conditions.

Table 5. -- Abutment scour depths for the 100- and 500-year discharges at structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina

Recurrence interval for discharge	Discharge (cubic feet per second)	Depth of scour ^{1, 2} at left abutment (feet)	Depth of scour ^{1, 2} at right abutment (feet)
100-year	24,800		21.3
500-year	36,000		27.6

¹ Abutment scour depths were calculated using the Froehlich (1989) live-bed abutment scour equation, assuming no abutment protection.

² The words "right" and "left" refer to directions that would be reported by an observer facing downstream.

[]

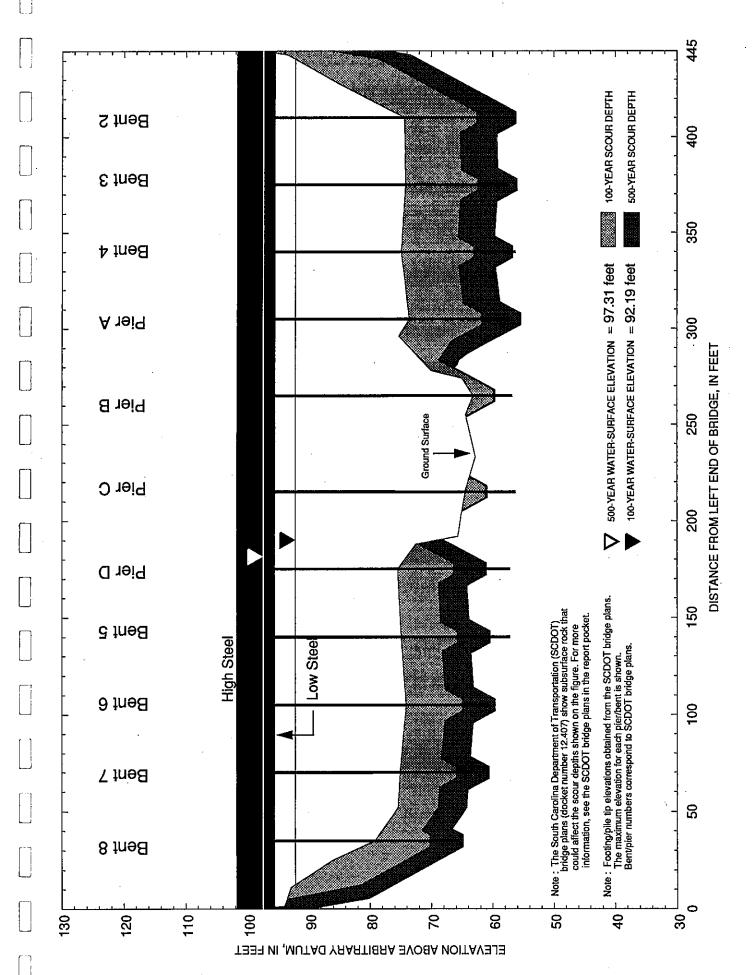


Figure 2.--Total scour depths for the 100- and 500-year discharges at the upstream face of structure 124000901100 on SC 97, crossing Fishing Creek in Chester County, South Carolina.

			П
	•		
			П
		·	

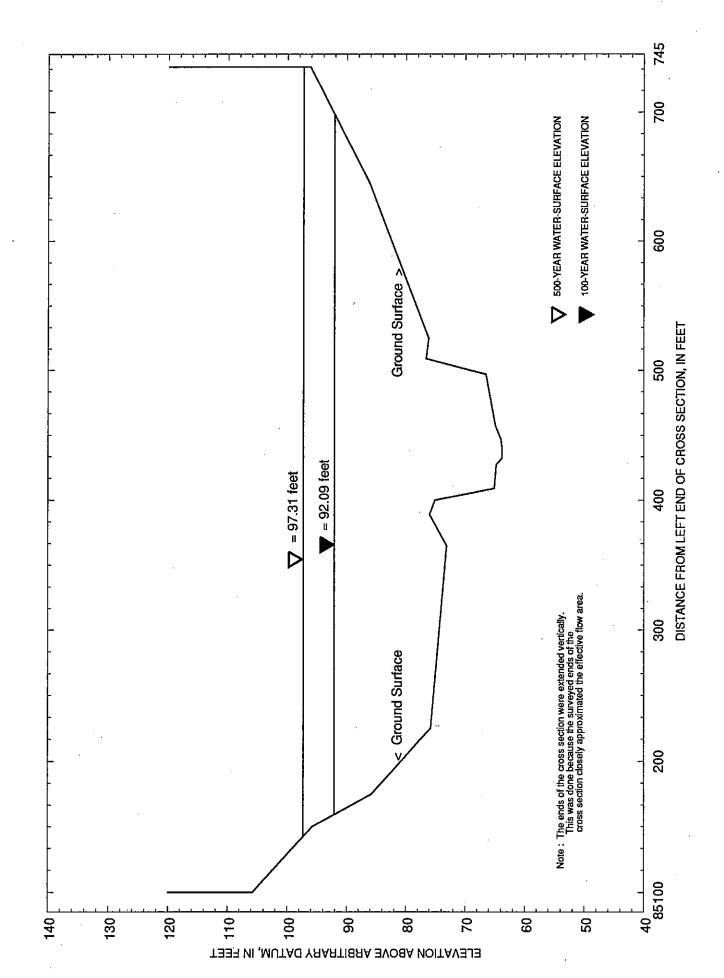



Figure 3.--Approach cross section at structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina.

		L.I
	,	
•		П
		П
•		

Figure 4.--Structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina as viewed from downstream (July 19, 1990).

Figure 5.--Structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina as viewed from upstream (July 19, 1990).

			П
<u>:</u>			
		4	
	•		

Figure 6.--Downstream channel as viewed from structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina (July 19, 1990).

Figure 7.--Upstream channel as viewed from structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina (July 19, 1990).

:				
L.				
<u> </u> -				
·				
				Ц

SELECTED REFERENCES

Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p. Arneson, L. A., Shearman, J. O., Jones, J. S., 1992, Evaluating scour at bridges using WSPRO: Transportation Research Board Draft Paper, 40 p. Bohman, L. R., 1990, Determination of flood hydrographs for streams in South Carolina: Volume 1. Simulation of flood hydrographs for rural watersheds in South Carolina: U.S. Geological Survey Water-Resources Investigations Report 89-4087, 53 p. Bohman, L. R., 1992, Determination of flood hydrographs for streams in South Carolina: Volume 2. Estimation of peak-discharge frequency, runoff volumes, and flood hydrographs for urban watersheds: U.S. Geological Survey Water-Resources Investigations Report 92-4040, 79 p. Froehlich, D. C., 1989, Local scour at bridge abutments in Ports, M. A., ed., Hydraulic Engineering-Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18. Guimaraes, W. B., and Bohman, L. R., 1991, Techniques for estimating magnitude and frequency of floods in South Carolina, 1988: U.S. Geological Survey Water-Resources Investigation Report, 91-4157, 174 p. Gunter, H.E., Mason, R.R., and Stamey, T.C., 1987, Magnitude and frequency of floods in rural and urban basins in North Carolina: U.S. Geological Survey Water-Resources Investigations Report, 87-4096, 54 p. Laursen, E. M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53. Laursen, E. M., 1963, An analysis of relief bridge scour: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 89, no. HY3, p. 93-118. Richardson, E. V., Harrison, L. J., Richardson, J. R., and Davis, S. R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p. Richardson, E. V., Simons, D. B., and Julien, P. Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016. Richardson, E. V., Simons, D. B., Karaki, S., Mahmood, K., and Stevens, M. A., 1975, Highways in the river environment: hydraulic and environmental design considerations: Federal Highway Administration. Shearman, J. O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p. Shearman, J. O., Kirby, W. H., Schneider, V. R., and Flippo, H. N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p. U.S. Geological Survey, Interagency Advisory Committee on Water Data, 1982, Guidelines for

determining flood flow frequency, Bulletin 17B of the Hydrology Subcommittee, 190 p.

	П
	Π
•	
	,
- 19 () () () () () () () () () (
	ليا

SCOUR REPORT SUMMARY

ıcture Number	124000901100	_ Stream	Fishing	Creek
inty Chest	er	Road	SC 9	District4
	<u>Descripti</u>	on of Brid	<u>ge</u>	
Bridge length	445 ft Bridge widt	h	ft Ma	x span length <u>50</u> ft
Alignment of b	ridge to road (on curve or s	traight)	straight	
	spillthrough			· ·
	ment? <u>yes</u>			
Description of	Friprap Six- to 16- inch g	ranite prese	nt at both a	butments. Riprap is
slumped at th	e right abutment due to roa	d drainage.		
	on of piers/pile bents Elestructure has been widene			
bridge and the	e widened structure is supp	orted by the	ee 1.0-ft so	uare concrete piles.
Is bridge skeu	ed to flood plain according	to USGS to	po map?	no Angle 0
Is bridge locat	ted on a bend in channel?	If so	, describe (mild, moderate, severe)
Debris accum	ulation on bridge at time o	f Level I or I	evel II site	visit:
	Date of inspection	Percent of blocked ho	channel rizontally	Percent of channe blocked vertically
Level I	7-19-1990	25		15
Level II	8-3-1993			·
Potential	for debris Moderate to hi	gh due to hi	gh flow ve	locities and the large
amount	of debris along the channel	banks and c	n the flood	l plain.
• • • • • • • • • • • • • • • • • • • •	eatures near or at the bridg r pile stumps approximate	•	••	
previous struct	ture, were observed in the c	hannel duri	ng the Lev	el I inspection on July 19,
1990.				

Description of Flood Plain

General top	ography	Typical !	Piedmont topog	graphy			
Flood-plai	n conditio	ons at brid	lge site: downst	ream (D/S), upstrea	m (U	[/S)	
Date of ins	pection	9-2-1993					
D/S left:		with sho	rt grass				
D/S right:	Modera	tely thick	hardwoods and	l some undergrowtl	n .		
U/S left:	Modera	tely thick l	hardwoods and	some undergrowth	1		
U/S right:	Modera	itely thick	hardwoods and	d some undergrowt	h		
		D	Description of	f Channel			
Average to	p width	107	ft	Average de	epth	11.7	ft
Predomina	nt bed m	aterial <u> </u>	sand	Bank materi	ial	silty sand	
Stream tup	e (straigh	ıt, meande	ering, braided, s	wampy, channelized	d) <u>n</u>	neandering	
	·					····	
Vegetative	cover on	channel b	anks near bridg	e: Date of inspect	ion	9-2-1993	
D/S left:	Moder	ate woody	vegetative cov	er		· ,	
D/S right:	Moder	ate woody	vegetative cov	er			
U/S left:	Moder	ate woody	vegetative cov	er			
U/S right:	Moder	ate woody	vegetative cov	er			
Do banks a	ippear sti	able? <u>ye</u>	S If not, i	describe location an	ıd ty _i	pe of instabil	ity aı
date of obs	servation	. Some l	bank failure wa	s noted on the upst	ream	left bank	
at the tin	ne of the	Level I ins	pection on 7-19	-1990.	<u></u>		
					•		
Describe a	ny obstru	ctions in c	channel and dat	te of observation.	No	ne observed.	
							
				·			

Hydrology

Drainage area 246 mi ²	
Percentage of drainage area in physiographic p	provinces:
Physiographic province	Percent of drainage area
Piedmont (high-flow area)	100

Is drainage area considered rural or urban?	rural Describe any significant
urbanization and potential for development.	There is no significant urbanization and a
low potential for future development in the d	
Is there a USGS gage on the stream of interest?	
USGS gage number	
Gage drainage area	mi ^z
Is there a lake/pond that will significantly affe	ect hydrology/hydraulics?no
If so, describe	
Calculated I	Discharges
$Q100 24,800 ft^3/s$	$Q500 = 36,000 \text{ ft}^3/\text{s}$
m. J.	ains as begin is located in the Which floor.
Method used to determine discharges The dra	
area of the State; therefore, the method descri	ibed by C.L. Sanders (11-30-1993) was
used to compute flood discharges. In general	, this method uses North Carolina USGS
flood discharge equations (WRIR 87-4096) to	compute the 100-year discharge, and
extrapolation using 2-, 10-, and 100-year disch	narges to compute the 500-year discharge.

Brief Description of the Water-Surface Profile Model (WSPRO) Analysis

Γ plans) <u>USGS survey</u>
dd 400.5 ft to USGS survey
ber 12.407). Add 319.7 ft to
ct number 68reop.sect.2cont.2).
tum. RM 1 is a chiseled
idge with an assumed
nstream left headwall of the

s section ID	Section Reference Distance (SRD) in feet	**How cross section was developed	Comments
KITA	-4019	2,3	Exit cross section at railway
ЛVA	-3688	2,3	Full-valley section at railway
DGA	-3688	1	U/S face of railway bridge
PPRA	-3410	1,3	First Approach cross section
PPRB	-3293	1,3	Second Approach cross section
XITB —	-600	2,4	Transition cross section at SC 9
XITC	-445	2,4	Exit cross section at SC 9 bridge
	0	2,4	Full-valley section at SC 9 bridge
EDGB	0	1	U/S face of SC 9 bridge
OAD —	24	5	Road grade cross section at SC 9
PPRC	494	2,4	Approach cross section at SC 9

For location of cross sections see topographic map included with report (figure 1).
 For more detail on how cross sections were developed see WSPRO input file.
 ** Cross section development: 1) survey at SRD 2) shift of survey data to SRD 3) modification of survey data based on topographic map 4) synthesized by combining channel survey data and topographic contours 5) other

Description of data and assumptions used in developing WSPRO model.

The drainage basin for the Route SC 9 crossing of Fishing Creek is located in the Piedmont physiographic province of South Carolina. The basin is located in the South Carolina high-flow area. The hydraulics at Route SC 9 are influenced by the backwater effects of the railway crossing approximately 3,650 ft downstream of the downstream bridge face.

To model the backwater effects of the railway crossing, the WSPRO model begins at the exit cross section (EXITA) 4,019 ft downstream of Route SC 9, proceeds upstream through the railway bridge, and ends at the approach cross section (APPRC) 494 ft upstream of the Route SC 9 bridge face. It was assumed that slope-conveyance methodology would be adequate for estimating the starting water-surface elevation at the exit cross section of the railway bridge.

The survey data collected at the railway bridge includes two approach cross sections and tapedowns at the upstream face of the railway. The first approach cross section (APPRA) was surveyed 240 ft upstream of the railway and the second approach cross section (APPRB) was surveyed 357 ft upstream of the railway. The cross section data for APPRA also was used for the exit and full valley cross sections of the railway bridge by shifting the survey data to the appropriate section-reference distance (SRD) and adjusting the cross section elevation by the channel slope. Contours from the USGS topographic map were used to define the left and right flood plains of APPRA, APPRB, FULVA, and EXITA.

The survey data collected at the Route SC 9 bridge includes tapedowns at the U/S and D/S faces of the bridge, an approach channel survey, and an exit channel survey. The approach channel was surveyed approximately 441 ft upstream of the upstream face of the Route SC 9 bridge. The exit channel was surveyed 478 ft downstream of the upstream face of the Route SC 9 bridge. The flood plain data was obtained from the SCDOT road plans (federal aid project number 68reop.sec.2cont.2.). The channel sections were then superimposed onto the flood plain data for the approach (APPRC) and exit (EXITB and EXITC) cross sections and shifted by the slope to the appropriate SRD. The exit cross section data also was used to represent a cross section (EXITB) of the transition from moderate woods to pasture on the downstream left flood plain. In addition, the full valley cross section at the Route SC 9 bridge used the exit cross section data. Contours from the USGS topographic map were used to define the left and right flood plain of APPRC.

Cross sections at the upstream and downstream faces of the Route SC 9 bridge were directly surveyed and the more constricted (upstream) face was used in the WSPRO model.

Bridge Hydraulics

Average embankment elevation 99.8 ft

Average low steel elevation 95.6 ft

100-year discharge 24,800 ft³/s

Water-surface elevation at D/S bridge face 92.19 ft

Area of flow at D/S bridge face 7,902 ft²

Average velocity in bridge opening 3.14 ft/s

Maximum WSPRO tube velocity at bridge 4.51 ft/s

Water-surface elevation at Approach section with bridge $\frac{92.09}{}$ ft

Water-surface elevation at Approach section without bridge $\frac{92.07}{}$ ft

Amount of backwater caused by bridge $\frac{0.02}{}$ ft

500-year discharge 36,000 ft³/s

Water-surface elevation at D/S bridge face 97.31^* ft

Area of flow at D/S bridge face 9,125 ft²

Average velocity in bridge opening 3.96 ft/s

Maximum WSPRO tube velocity at bridge 5.40 ft/s

Water-surface elevation at Approach section with bridge $\frac{97.31}{ft}$ ft

Water-surface elevation at Approach section without bridge $\frac{97.15}{ft}$ ft

Amount of backwater caused by bridge $\frac{0.16}{ft}$

*The water-surface elevation at the downstream bridge face is determined from the full-valley section because the bridge is in pressure flow.

Scour

Describe any special assumptions or considerations made in bridge scour analysis.

Scour depths were computed using engineering judgement and the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993) and the Transportation Research Board Draft Paper, "Evaluating scour at bridges using WSPRO" (Arneson and others, 1992). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 through 5 and a graph of the scour depths is shown on figure 2.

The local pier scour was determined using the Colorado State University pier scour equation (Richardson and others, 1993). Pier D and bents 5 through 8 are located on the left overbank and were analyzed using the maximum left overbank WSPRO tube velocity and the depth of flow at each bent. Pier A and bents 2 through 4 are located on the right overbank and were analyzed using the maximum right overbank WSPRO tube velocity and the depth of flow at each bent. Piers B and C are located in the channel and were analyzed using 90 percent of the maximum WSPRO tube velocity and the maximum depth within the channel at the bridge. The maximum depth within the channel was used to account for possible changes in the thalweg during a flood.

The left and right overbanks at the bridge were analyzed for contraction scour using Laursen's clear-water contraction scour equation (Richardson and others, 1993). The channel contraction scour was analyzed using Laursen's modified live-bed contraction scour equation (Richardson and others, 1993).

The live-bed contraction scour equation indicates the deposition of sediment in the channel at the bridge during the 100- and 500-year floods. (See negative scour values determined in scour calculations included at the end of the report). However, it seems unreasonable to expect sediment deposition at the bridge during peak flood conditions. Therefore, the negative scour values were set equal to zero as reflected in tables 1through 4 and figure 2.

The	The left abutment is protec				
	-bed abutment scour equati				
	It should be noted that th		plan borings (do	ocket number 12.407) s	show
sub:	surface rock that could affec				
see	the SCDOT bridge plans in	the pocket at the	back of the repor	<u>rt.</u>	
	·				
,					
	·			·	
		•			
				•	
			,		
				·	

WSPRO INPUT FILE

```
Structure #124000901100
                                             (445 ft. bridge)
T1
           Fishing Creek at SC 9
                                         file: fish.sc9
Т2
                                             AWC
                                                   September 1994
Т3
           Chester County, South Carolina
           Q100
*
                     Q500
           24800
                     36000
Q
SK
           .00037
                     .00037
           * * .005
J1
           *****************
           * This WSPRO run begins at the railway crossing of Fishing*
           * Creek which is approximately 3,650 ft downstream of the *
           * downstream bridge face of the Route SC 9 bridge crossing*
           * of Fishing Creek. This was necessary in order to model
           * the backwater effects caused by the constriction at the *
           * railway crossing.
           Survey data for the EXITA cross section was taken at
           240 ft upstream of the upstream face of the railway
           crossing of Fishing Creek. The distance is determined
           from the survey of 1-27-1993. The cross sections
           were extended by the slope of the contours. The left flood
           plain was extended from contour 400 (sta. 122) to contour
           430 (sta. -25). The right flood plain was extended from
           contour 400 (sta. 390) to the top of the railway.
    SURV1
           -3410
                   0.00037
XT
           -25 101.0
                       50
                           91.0
                                  90
                                      81.0
                                             122
                                                 71.0
                                                        147
GR
                                       71.9
                                             216 70.0
                                                         219
                                                             63.5
               70.2
                           71.1
                                  211
GR
           163
                       184
                                  247
                                       61.7
                                             258
                                                  61.7
                                                         272
                                                             61.9
           225
               61.9
                       235
                           62.0
GR
                           63.6
                                                  70.8
                       291
                                  298
                                       68.2
                                             307
                                                         316
                                                             73.8
           283
                62.4
GR
                           70.8
                                  343
                                       70.4
                                             390
                                                  71.0
                                                         590 81.0
           330
                75.2
                       336
GR
                           113.2
GR
           700
                91.0
                       900
          -4019
    EXITA
XS
GT
           .20
               .043
                       .14
                             .08
N
              219
                    298 336
SA
PX
*
    FULVA -3688
XS
GT
PX
```

*

WSPRO INPUT FILE -- Continued

```
+++++ Railway Bridge +++++
           U/S Face of Railway Bridge
*
    BRDGA -3688 78.3 20
                                             10.1 109.9 35.5 109.9
                                 10 105.9
                       2 107.8
            0 113.2
GR
                                                       93 73.4
                                  69 79.1
                                             77 75.2
           35.6 91.2
                        52 87.7
GR
                                             125 57.1
                                                         136 60.3
                                  116 57.9
                       109 60.3
           100 64.6
GR
                                               162 89.8
                                                           165.3 89.7
                                  158.3 89.8
                       158 61.7
           148 60.3
GR
                                                    67.4
                                                           200 70.6
                                   179 64.5
                                               190
                        171 61.6
           165.5 60.6
GR
                                                           277 79.1
                                  250 73.4
                                              276.9
                                                    78.6
                       225 71.3
           203 72.4
GR
                                                               300 92.0
                                     283.5 87.1
                                                   293 90.1
                         283.4 89.7
           277.1 89.7
GR
                                                  329.7
                                                        113.2
                                   329.6 105.2
           306 95.7
                       319 101.5
GR
           331 113.2
                        0 113.2
GR
                         0.045
           0.045 0.04
N
                93 . 203
SA
           3 38 1.5 113.2
CD
                                              105.1 2.0
                                                          105.1 3.0
                                  95.6 2.0
           90.0 1.0
                       95.6 1.0
PW 1
                      113.2 0
           113.2 3.0
PW
PX
*
*
           Data for APPRA was surveyed 240 ft upstream
*
           of the upstream face of the railway crossing of Fishing
           Creek. The distance is determined from the survey
           of 1-27-1993. The cross sections were extended by the slope
           of the contours. The left flood plain was extended from
           contour 400 (sta. 102) to contour 420 (sta. -152).
           The right flood plain was extended from contour 400 (sta. 371)
           to the top of the railway.
*
*
XT
     SURV2
           -3410
                   0.00037
                                                          147
                                                              70.9
                                              122 71.0
                        -102 89.4 102 79.4
            -152 99.4
GR
                                                          219
                                                              63.5
                                                   70.0
                                       71.9
                                              216
            163
                70.2
                       184
                           71.1
                                  211
GR
                                                          272
                                                              61.9
                                              258
                                                   61.7
            225
                61.9
                       235
                            62.0
                                   247 .61.7
GR
                                                              73.8
                                                          316
                       291
                            63.6
                                   298
                                       68.2
                                              307
                                                   70.8
            283
                62.4
GR
                                                              78.6
                                       70.4
                                              355
                                                  74.5
                                                          369
                       336
                           70.8
                                   343
            330
                75.2
GR
                                       113.2
                       400 89.4
                                   410
                79.4
GR
            371
* .
AS
     APPRA
           -3410
GT
            .20 .043 .14 .20
N
                    298 336
            219
SA
            126
BP .
PX
*
```

WSPRO INPUT FILE --Continued

Data for APPRB was surveyed at 357 ft upstream of the upstream face of the railway crossing of Fishing Creek. The distance is determined from the survey of 1-27-1993. The cross sections were extended by the slope of the contours. The left flood plain was extended from contour 400 (sta. -30) to contour 420 (sta. -210). The right flood plain was extended from contour 400 (sta. 536) to the top of the railway.

```
-3293
                      0.00037
     APPRB
X$
                               -120 90.8
                                             -30
                                                  80.8
               -210
                      100.8
GR
                                                    83 73.1
                                                                124 71.9
                               74.3
                                        35 73.2
                Ö
                   79.2
                           14
GR
                                                      173
                                                           71.0
                                                                   224
                                                                         70.1
                                 68.0
                                         136
                                              71.5
GR
              130
                    68.1
                           133
                                                      316
                                                            71.9
                                                                   330
                                              70.3
                                 73.4
                                         302
GR
              250
                    74.6
                           282
                                                                   365
                                                                         63.6
                                                      360
                                                            70.6
                           345
                                 66.6
                                         353
                                              73.8
              336
                    65.5
GR
                                                            61.4
                                                                   415
                                                                         61.3
                                         397
                                              62.0
                                                      411
                    61.8
                           380
                                62.2
              371
GR
                                                                   463
                                                                         76.3
                                                      450
                                                            73.0
                    62.3
                           441
                                 64.6
                                         446
                                              72.6
              436
GR
                                                                   536
                                                                         80.8
                    75.6
                           517
                                 74.3
                                         529
                                              77.5
                                                      533
                                                            79.4
              487
GR
                                 113.2
GR
              596
                    90.8
                           636
                     .08
                                  .043
                                          .14
              .20
                           .15
N
                        353
                              360
                                      446
                 316
SA
```

+++++++++ SURVEY DATA FOR ROUTE SC 9 +++++++++

Flood plain data was taken from SCDOT road plans (fed. aid project no. 68reop.sec2.cont.2.). An exit channel cross section was surveyed at 478 ft downstream of the upstream face of the Route SC 9 bridge and superimposed onto the flood plain survey. EXITB is a cross section to model the transition from woods to pasture on the left flood plain. EXITC is a cross section that models the pasture on the left flood plain.

```
XT
     SURV3
             -478
                     0.00037
                                                                                 82.8
                                        12 88.3
                                                    25 87.3
                                                                50
                                                                     83.8
                                                                            .75
                     105.3
                                90.8
                             0
GR
              -155
                                                      383
                                                            74.4
                                                                    400
                                                                         75.6
                                              73.1
                    79.5
                            225
                                 75.8
                                         365
              125
GR
                                                            65.0
                                                                    457
                                                                         65.1
                                               64.8
                                                      444
                                 64.9
                                         432
                    67.8
                            424
GR
              406
                                                                         64.8
                                                            64.0
                                                                    493
                                               64.5
                                                      487
                                         480
              466
                    64.8
                            472
                                 64.3
GR
                                                                         77.8
                                                            75.8
                                                                    560
                                         525
                                              76.2
                                                      540
              500
                    74.1
                            505
                                 75.1
GR
                                               74.4
                                                            74.3
                                                                    925
                                                      725
                                 71.8
                                         665
GR
              600
                    72.5
                            625
                             1125 92.4
                                           1190 92.5
                                                          1275 104.3
              1025
                    88.1
GR
*
```

```
XS EXITB -600
GT
N .16 .043 .16
SA 400 505
```

PX *

*

PX *

WSPRO INPUT FILE --Continued

```
XS
     EXITC -445
GT
            .03
N
                 .043 .16
               400
                     505
SA
PΧ
*
XS
     FULVB
GT
PX
*
                   ROUTE SC 9 BRIDGE
            0 95.6
BR
     BRDGB
                                       94.0
                                                   92.9
                                                          25
                                                              86.1
                                  1.1
                                              11
GR
             0 95.6
                        1 95.6
                                                           140 74.9
                79.2
                        52 75.4
                                   70
                                       75.1
                                              105 74.1
GR
            35
                                                  215
                             72.5
                                     192
                                          65.7
                                                       64.5
                                                              233
                 75.5
                         188
            175
GR
                                                                   75.3
                                     274
                                          65.0
                                                  278
                                                       70.0
                                                              296
                              63.2
GR
            255
                 64.4
                         265
                                                       74.4
                                                              428
                                                                   85.2
                 73.6
                              74.9
                                     375
                                          74.2
                                                  410
            305
                         340
GR
                                     445
                                          95.5
                                                  ٥
                                                    95.6
                         444
                              95.5
GR
            443
                 93.5
                    .04
             .045
                          .045
N
                       278
                188
SA
CD
            3 49 2
                       99.8
                                     64.5
                                           2.0
                                                  73.6
                                                        2.0
                                                              73.6
                                                                     3.0
            63.2
                  1.0
                         64.5
                              1.0
PW 1
                                     74.2
                                           4.0
                                                  74.2
                                                        5.0
                                                              74.4
                                                                     5.0
                         74.1
                               4.0
PW
            74.1
                  3.0
                                           8.0
                                                  75.1
                                                        8.0
                                                              75.1
                                                                     9.0
                         74.9
                               6.0
                                     74.9
            74.4
                  6.0
PW
                                      79.2 10.0
                                                    79.2 11.0
                                                                 95.6 11.0
                         75.5
                               10.0
            75.5
                  9.0
PW
            95.6
PW
PX
*
            Road Cross Section
*
*
               49
     ROAD
            24
XR
                                         -10099.3
                                                       0 99.3
                           -210
                                 101.3
GR
            -400 105.3
                                                      805 99.3
                                101.7
                                          445 99.3
GR
            0.1
                 101.7
                          444.9
                                102.8
                 100.3
                          1045
GR
            895
*
            Flood plain data was taken from SCDOT road plans (fed.
            aid project no. 68reop.sec2.cont.2.). An approach channel
            cross section was surveyed at 441 ft upstream of the
            upstream face of the Route SC 9 bridge and superimposed
            onto the flood plain survey. The left flood plain data
            was extended by the slope of the contours from the
            contour 400 (sta. 225) to contour 430 (sta. 100).
            441
                   0.00037
XΤ
     SURV4
                           100 105.8
                                        150 95.8
                                                     175 85.8
                  120.0
GR
            99.9
                                          76.0
                                                  400
                                                       75.1
                         365
                             73.1
                                     389
GR
            225
                 75.8
                                          63.8
                         427 64.8
                                                                    64.0
                                     432
                                                  441
                                                       63.8
                                                              447
GR
            409
                  65.1
                                     509 76.6
                                                  525
                                                                    86.2
GR
            457
                  64.9
                         497
                             66.5
                                                       76.2
                                                              645
            735
                 96.2
                         735.1 120.0
GR
*
```

WSPRO INPUT FILE --Continued

```
APPRC
            494
AS
*
GT
                 .043 .16
N
             .16
              400
                      509
ŞA
ВP
             212
PX
*
                        92.19
              92.19
                     0
HP 1 BRDGB
                                24800
                        92.20
              92.20
HP 2 BRDGB.
                     0
              92.09
                        92.09
HP 1 APPRC
                     0
                                24800
HP 2 APPRC
              92.09
                     0
                        92.09
HP 1 BRDGB
              95.60
                     0
                        95.60
              97.08
                     0
                        97.08
                                36000
HP 2 BRDGB
              97.31
                     0
                        97.31
HP 1 APPRC
HP 2 APPRC
              97.31
                     0
                        97.31
                                36000
*
EX
ER
```

WSPRO OUTPUT

WSPRO V042094	FEDERAL H	IGHWAY ADMIN	NISTRATION - R-SURFACE I	- U. S. GEOI PROFILE COM	GOGICAL SURV	ÆY
	Structure #12 Fishing Creek Chester Count *** RUN DATE SECTION PROPE	at SC 9 y, South Car & TIME: 10-	file colina -27-94 12:0	e: fish.sc9 AWC Septe)5	ember 1994	· 0.
WSEL 92.19	2 2494 3 2650	K 563451 810683 551041 1925175	TOPW WES 176 18 90 163 10 428 44	TP ALPH 30 97 58 45 1.16	12 441	QCR 62019 74481 60701 178520
W 92	TY DISTRIBUTI	REW AF	REA I	X Q . 24800.	VEL 3.14	
X STA. A(I) V(I)	12.4 594.8 2.08	64.3 470.1 2.64	91.4 438.5 2.83	115.9 436.5 2.84	140.7 446.1 2.78	166.8
X STA. A(I) V(I)	166.8 463.1 2.68	191.9 310.3 4.00	290.4	283.4	274.9	*
A(I) V(I)	233.7 276.2 4.49	278.1	285.8	289.7	417.8	
A(I)	293.1 435.6 2.85	433.5	438.9	455.4	586.4	

V				•							
		S	tructi	ure #12	4000901100	a 1	(445	ft. br	idge)		
		E.	ishin	g Creek	at SC 9	ti malina	.le: f	ish.sc9	omb o m	1004	
					y, South Ca & TIME: 10				ember	1994	
	CRO				RTIES: ISE				; SRI) =	494.
	WS:	EL :		AREA	K	TOPW W	ETP	ALPH	LEW /	REW	
			1		209870						81
					816518						81
	0.2	09	3	1/10	69019 1095408	189	190	3 54	160	609	29 96
	54.	0 9		0217	1032400	339		J.J .	103	030	30
	•				• •						
	VEL	OCIT	Y DIS	rributi(ON: ISEQ =	11; SECI	:D = A	PPRC;	SRD =	49	94.
											94.
		WS	ΞL	LEW	REW A	REA	K	Q	VEI	1	94.
		WS	ΞL	LEW		REA	K	Q	VEI	1	94.
x		WS:	EL 09 :	LEW 159.3	REW A 697.8 821	REA 7.5 109540	K 8.	Q 24800.	VEI 3.02	<u>.</u>	·
	STA.	WS:	EL 09 : 159	LEW 159.3	REW A 697.8 821	REA 7.5 109540 309.9	K 08. 358	Q 24800.	VEI 3.02	2.	412.3
	STA. A(I)	WS:	EL 09 :	LEW 159.3 .3 1147.9	REW A 697.8 821	REA 7.5 109540 309.9 887.	K 08. 358 5	Q 24800. .2 785.3	VEI 3.02 402.9	2.	412.3
	STA. A(I) V(I)	WS1	EL 09 :	LEW 159.3 .3 1147.9 1.08	REW A 697.8 821 257.3 915.2 1.35	REA 7.5 109540 309.9 887. 1.4	K 08. 358 5	Q 24800. .2 785.3 1.58	VEI 3.02 402.9	232.3 5.34	412.3
x	STA. A(I) V(I) STA.	WS:	EL 09 : 159	LEW 159.3 .3 1147.9 1.08	REW A 697.8 821 257.3 915.2 1.35	REA 7.5 109540 309.9 887. 1.4	K 08. 358 5 10	Q 24800. .2 785.3 1.58	VEI 3.02 402.9	232.3 5.34	412.3
X	STA. A(I) V(I) STA. A(I)	WSI 92.	EL 09 : 159	LEW 159.3 .3 1147.9 1.08	REW A 697.8 821 257.3 915.2 1.35 419.0	REA 7.5 109540 309.9 887. 1.4 425.6 177.	K 358 5 0 432	Q 24800. .2 785.3 1.58	VEI 3.02 402.9	232.3 5.34	412.3
x	STA. A(I) V(I) STA.	WSI 92.	EL 09 : 159	LEW 159.3 .3 1147.9 1.08	REW A 697.8 821 257.3 915.2 1.35	REA 7.5 109540 309.9 887. 1.4 425.6 177.	K 358 5 0 432	Q 24800. .2 785.3 1.58	VEI 3.02 402.9	232.3 5.34	412.3
x	STA. A(I) V(I) STA. A(I) V(I)	WS 92.	EL 09 : 159 412	LEW 159.3 .3 1147.9 1.08 .3 182.8 6.78	REW A 697.8 821 257.3 915.2 1.35 419.0 179.7 6.90	REA 7.5 109540 309.9 887. 1.4 425.6 177. 6.9	K 358 5 0 432 3	Q 24800. .2 785.3 1.58 .1 172.9 7.17	VEI 3.02 402.9	232.3 5.34 272.7	412.3
x x	STA. A(I) V(I) STA. A(I) V(I) STA.	WS:	EL 09 : 159 412	LEW 159.3 .3 1147.9 1.08 .3 182.8 6.78	REW A 697.8 821 257.3 915.2 1.35 419.0 179.7 6.90	REA 7.5 109540 309.9 887. 1.4 425.6 177. 6.9	K 08. 358 5 0 432 3 9	Q 24800. .2 785.3 1.58 .1 172.9 7.17	VEI 3.02 402.9 438.2	232.3 5.34 172.7 7.18	412.3
x x	STA. A(I) V(I) STA. A(I) V(I)	WS: 92.	EL 09 : 159 412	LEW 159.3 .3 1147.9 1.08 .3 182.8 6.78	REW A 697.8 821 257.3 915.2 1.35 419.0 179.7 6.90	REA 7.5 109540 309.9 887. 1.4 425.6 177. 6.9	K 8. 358 5 0 432 3 9 463 7	Q 24800. .2 785.3 1.58 .1 172.9 7.17	VEI 3.02 402.9 438.2	232.3 5.34 172.7 7.18	412.3
x x	STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	WS:	EL 09 : 159 412	LEW 159.3 .3 .1147.9 .08 .3 .182.8 .6.78	REW A 697.8 821 257.3 915.2 1.35 419.0 179.7 6.90 450.5 174.9 7.09	REA 7.5 109540 309.9 887. 1.4 425.6 177. 6.9 456.8 177.	K 18. 358 5 0 432 3 9 463 7	Q 24800. .2 785.3 1.58 .1 172.9 7.17 .4 177.8 6.98	VEI 3.02 402.9 438.2	232.3 5.34 172.7 7.18 182.5 6.80	412.3
x x	STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	WS. 92.	EL 09 159 412 444	LEW 159.3 .3 .1147.9 .08 .3 .82.8 .6.78 .3 .7.17	REW A 697.8 821 257.3 915.2 1.35 419.0 179.7 6.90 450.5	REA 7.5 109540 309.9 887. 1.4 425.6 177. 6.9 456.8 177. 6.9	K 18. 358 5 0 432 3 9 463 7 8	Q 24800. .2 785.3 1.58 .1 172.9 7.17 .4 177.8 6.98	VEI 3.02 402.9 438.2 470.0	232.3 5.34 172.7 7.18	412.3 444.3 476.9

WSPRO V042094	FEDERAL H MODEL	IGHWAY ADMIN FOR WATER	NISTRATION R-SURFACE I	- U. S. GEON	LOGICAL SURV	ÆY
Ch *	ester County ** RUN DATE	4000901100 at SC 9 y, South Car & TIME: 10- RTIES: ISE(rolina -27-94 12:0	AWC Septe 05	ember 1994	0.
	A# AREA 1 3378 2 2796	K 479073 632682	TOPW WE:	PP ALPH 31 37	LEW REW	QCR 0 0
95.60	9373	1582543	0 90	09 1.16		
WSE	L LEW	ON: ISEQ = REW AI 445.0 9372	REA 1	K Q	VEL .	
X STA. A(I) V(I)	0.0 750.7 2.40	62.0 553.5 3.25	88.8 517.6 3.48	113.2 513.8 3.50	137.6 507.1 3.55	162.4
X STA. A(I) V(I)	508.7	186.8 405.7 4.44	342.1	344.5	333.8	. •.
X STA. A(I) V(I)	333 2	243.9 335.7 5.36	336.0	364.8	483.1	
X STA. A(I) V(I)	502.9	321.5 503.1 3.58	514.8	537.6	683.8	

				•					
				4000901100					
				at SC 9					
				y, South Ca & TIME: 10				1994	
	CROS			RTIES: ISE				. =	494
	WSE	EL SA#	AREA	K	TOPW WE	ETP ALPH	LEW	REW	
	•	1	4975	330792 1108571	257 2	261			124
		2	3394	139863	109	117			107
	97.3	11	11183	1579225	502	140 106 3 91	1/2	725	58
	5115	, <u> </u>	*****	10/5225	332	3.81	143	755	7.47
		WSEL	LEW	ON: ISEQ = REW A 735.0 1118	11; SECID REA 2.6 1579225	K Q	VEL		94.
x	STA.	WSEL 97.31	LEW 142.5	REW AI 735.0 1118:	REA 2.6 1579225 297.7	K Q 36000.	VEL 3.22 390.0		409.8
	STA. A(I)	WSEL 97.31	LEW 142.5 12.5 1507.6	REW AND 735.0 11183 248.7 1097.7	REA 2.6 1579225 297.7 1098.3	K Q 36000. 344.7	VEL 3.22 390.0	489.Ó	409.8
	STA. A(I)	WSEL 97.31	LEW 142.5 12.5 1507.6	REW AI 735.0 1118:	REA 2.6 1579225 297.7 1098.3	K Q 36000. 344.7	VEL 3.22 390.0	489.Ó	409.8
	STA. A(I) V(I)	WSEL 97.31	LEW 142.5 12.5 1507.6 1.19	REW AT 735.0 11185 248.7 1097.7 1.64 417.1	REA 2.6 1579225 297.7 1098.3 1.64	K Q 36000. 344.7 1052.7 431.2	VEL 3.22 390.0	489.0 3.68	409.8
x	STA. A(I) V(I) STA. A(I)	WSEL 97.31	LEW 142.5 12.5 1507.6 1.19	REW AT 735.0 11185 248.7 1097.7 1.64 417.1	REA 2.6 1579225 297.7 1098.3 1.64	K Q 36000. 344.7 1052.7 431.2	VEL 3.22 390.0	489.0 3.68	409.8
x	STA. A(I) V(I) STA.	WSEL 97.31	LEW 142.5 12.5 1507.6 1.19	REW AT 735.0 11185 248.7 1097.7 1.64	REA 2.6 1579225 297.7 1098.3 1.64	K Q 36000. 344.7 1052.7 431.2	VEL 3.22 390.0	489.0 3.68	409.8
x	STA. A(I) V(I) STA. A(I) V(I)	WSEL 97.31 14	LEW 142.5 12.5 1507.6 1.19 09.8 236.6 7.61	REW AN 735.0 11183 248.7 1097.7 1.64 417.1 229.0 7.86	REA 2.6 1579225 297.7 1098.3 1.64 424.2 229.1 7.86	K Q 36000. 344.7 1052.7 1.71 431.2 223.6 8.05	VEL 3.22 390.0	489.0 3.68 223.5 8.05	409.8
x x	STA. A(I) V(I) STA. A(I) V(I) STA.	WSEL 97.31 14	LEW 142.5 12.5 1507.6 1.19 19.8 236.6 7.61	REW AT 735.0 11185 248.7 1097.7 1.64 417.1	REA 2.6 1579225 297.7 1098.3 1.64 424.2 229.1 7.86	K Q 36000. 344.7 1052.3 1.71 431.2 223.6 8.05	VEL 3.22 390.0 7 437.9	489.0 3.68 223.5 8.05	409.8
x x	STA. A(I) V(I) STA. A(I) V(I) STA. A(I)	WSEL 97.31 14	LEW 142.5 1507.6 1.19 19.8 236.6 7.61	REW AN 735.0 11183 248.7 1097.7 1.64 417.1 229.0 7.86	REA 2.6 1579225 297.7 1098.3 1.64 424.2 229.1 7.86 458.1 228.9	K Q 36000. 344.7 1052.7 431.2 223.6 8.05 465.2 229.2	VEL 3.22 390.0 7 437.9	489.0 3.68 223.5 8.05	409.8 444.6 479.7
x x	STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	WSEL 97.31 14	LEW 142.5 1507.6 1.19 19.8 236.6 7.61 44.6 221.6 8.12	REW AN 735.0 1118. 248.7	REA 2.6 1579225 297.7 1098.3 1.64 424.2 229.1 7.86 458.1 228.9 7.87	K Q 36000. 344.7 1052.3 1.71 431.2 223.6 8.05 465.2 7.85	VEL 3.22 390.0 7 437.9	489.0 3.68 223.5 8.05	409.8 444.6 479.7
x x	STA. A(I) V(I) STA. A(I) V(I) STA. A(I) V(I)	WSEL 97.31 14 40 44	LEW 142.5 12.5 1507.6 1.19 19.8 236.6 7.61 14.6 221.6 8.12	REW AT 735.0 11185 248.7 1097.7 1.64 417.1 229.0 7.86 451.2 224.6	REA 2.6 1579225 297.7 1098.3 1.64 424.2 229.1 7.86 458.1 228.9 7.87	K Q 36000. 344.7 1052.7 1.71 431.2 223.6 8.05 465.2 229.2 7.85	VEL 3.22 390.0 437.9 472.4	489.0 3.68 223.5 8.05 230.0 7.83	409.8 444.6 479.7

						•			
WSPRO V042094							EOLOGICA COMPUTAT		
	Structure Fishing (Chester (*** RUN	Creek at	SC 9 South Ca	rolina	file 1	e: fish.s AWC Se	bridge) sc9 eptember	1994	
	E SRDL D FLEN	LEW REW			HF HO		CRWS FR#		WSEL
EXITA:XS -401	***** 8 *****	53 692	9800 1288648	0.33 3.28	****	90.42	76.74 0.21	24800 2.53	90.09
FULVA:FV -368			1289173	3.28	0.00	0.00		2.53	90.22
===135 C	ONVEYANCE	RATIO O				ED LIMITS			
	278 9 278 <<< <the< td=""><td>400</td><td>867942</td><td>4.84</td><td>0.33</td><td>0.00</td><td>0.38</td><td>3.60</td><td></td></the<>	400	867942	4.84	0.33	0.00	0.38	3.60	
===255 A	TTEMPTING					78.3	30	•	
	<<< <ri< td=""><td>ESULTS R</td><td>EFLECTIN</td><td>IG THE</td><td>CONST</td><td>RICTED FI</td><td>LOW FOLLO</td><td>₩>>>></td><td></td></ri<>	ESULTS R	EFLECTIN	IG THE	CONST	RICTED FI	LOW FOLLO	₩>>>>	
XSID:COD SR	E SRDL D FLEN	LEW REW	AREA K	VHD ALPH		EGL ERR	CRWS FR#		WSEL
BRDGA:BR -368	331 7 *****		4299 890362				76.14 0.25		90.22
· TYPE	PPCD FLOT			LSE 78.3			AB XRAB ** ****		
XSID:COD		LEW REW		VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
APPRA:AS -340		-105 400				91.21 0.00	77.09 0.37	24800 3.55	90.26
M (****	G) M(K) ** ****	K *****	Q XLKQ	XRE	Q (** !	TEL 00.07			
		<<<<	END OF E	BRIDGE	COMPU	TATIONS>>	>>>>		•

===135 CONV	/EYANCE	RATIO			OMMENDED KRATIO				
XSID: CODE		LEW					CRWS		WSEL
SRD	FLEN	REW	K	ALPH	HO	ERR	FR#	VEL	
							٠		
APPRB:XS	117	-120	11761						90.94
-3292	117	596	1249138	4.92	0.00	0.00	0.20	2.11	
EXITB:XS									91.99
- 599	2693	1117	1434624	5.48	0.00	0.00	0.18	1.58	
===135 CONV	EYANCE	RATIO							
			"EXIT	'C"	KRATIO	= 1.8	39		
EXITC:XS	155	-13	15785	0.09	0.02	92.23	*****	24800	92.14
-444	1.55	1119	2716698	2.35	0.00	0.00	0.11	1.57	
FULVB:FV	445	-12	15640	0.09	0.04	92.27	*****	24800	92.18
0 <<<	445 < <the a<="" td=""><td></td><td>2683875 ESULTS RE</td><td></td><td></td><td></td><td></td><td>•</td><td></td></the>		2683875 ESULTS RE					•	
===135 CONV	EIANCE	RATIO			KRATIO	= 0.4	11		
XSID: CODE		LEW REW					CRWS FR#	Q VEL	WSEL
APPRC:AS			8209 1094075						92.07
			ESULTS RE						>>>>
	<<< <re< td=""><td>SULTS</td><td>REFLECTIN</td><td>G THE</td><td>CONSTRI</td><td>CTED FI</td><td>LOW FOLLO</td><td>W>>>></td><td></td></re<>	SULTS	REFLECTIN	G THE	CONSTRI	CTED FI	LOW FOLLO	W>>>>	
XSID: CODE		LEW	AREA	VHD	HF	EGL	CRWS	Q	WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
BRDGB:BR	445	12	7902	0.15	0.09	92.34	78.34	24800	92.19
0	445	441	1925323	1.00	0.02	0.01	0.13	3.14	
TYPE PP	CD FLOW	0 00	C P/A 8 0.027	LSE	EL BLE	N XLA	AB XRAB	1	
٥.	т. т.	0.99	0.027	95.0	0 ^^^^				
XSID:COD ROAD:RG								Q WSE: >>>>	Ľ
XSID: CODE	SRDL	LEW					CRWS		WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	VEL	
APPRC: AS								24800	92.09
494	456	698	1095341	3.54	0.01	0.02	0.26	3.02	
			KQ XLKQ				r		
0.205	0.010	108355	9. 223.	651	91	.86			

			•						
WSPRO V042094	FEDEI	RAL HIGH MODEL E	HWAY ADMIN FOR WATER	IISTRA R-SURE	ATION -	PROFILE C	OLOGICAL OMPUTATI	ONS	
;	Structure	e #12400	0901100		(445 ft. b	ridge)		
1	Fishing (Creek at	SC 9	on line	file	(445 ft. b e: fish.sc AWC Sep	9 tember 1	994	
•	nester (*** RUN	DATE &	TIME: 10-	·27-94	12:0)5	CCMDCI I	JJ4	
							CDMS	0	WSEL
XSID:CODE	SRDL FLEN	LEW REW	AREA K	ALPH	HO	ERR	FR#	VEL	MODE
					.4444.	05 20	70 27	36000	95.00
EXITA:XS	*****	18 738	13139 1869942	0.38 3.22	****	95.38 *****	0.20	2.74	95.00
FULVA:FV	331 331	18	13142	0.38	0.12	95.51 * 0.00	***** 0.20	36000 2.74	95.13
-3687 <	331 <<< <the 3<="" td=""><td>730 ABOVE RI</td><td>ESULTS REE</td><td>PLECT</td><td>"NORM</td><td>AL" (UNCON</td><td>STRICTED</td><td>) FLOW>></td><td>·>>></td></the>	730 ABOVE RI	ESULTS REE	PLECT	"NORM	AL" (UNCON	STRICTED) FLOW>>	·>>>
			~~~~~	DECC	MMENTO	T TMTMC			
===135 CO	NVEYANCE	RATIO (	OUTSIDE OF APPR"	. KECC	KRAT I	0.65	•		•
	•							0.6000	04 05
APPRA:AS	278	-128 402	9384	1.21	0.16	96.08 * 0.00	0.37	36000	94.87
-3409	<< <the .<="" td=""><td>ABOVE RI</td><td>ESULTS REF</td><td>PLECT</td><td>"NORM</td><td>AL" (UNCON</td><td>STRICTED</td><td>) FLOW&gt;&gt;</td><td>·&gt;&gt;&gt;</td></the>	ABOVE RI	ESULTS REF	PLECT	"NORM	AL" (UNCON	STRICTED	) FLOW>>	·>>>
055.38	mr334D.m T310	ELOM C	T N C C 2 (6)	. eati	ITT ∩N				
===255 AT	TEMPTING	FLOW C	S3N, LSEL =	= (	95.13	78.30			•
	_							****	•
•	<<< <r< td=""><td>ESULTS 1</td><td>REFLECTING</td><td>3 THE</td><td>CONST</td><td>RICTED FLO</td><td>M FOTTON</td><td></td><td></td></r<>	ESULTS 1	REFLECTING	3 THE	CONST	RICTED FLO	M FOTTON		
XSID: CODE	SRDL	LEW	AREA	VHD	HF	EGL	CRWS		WSEL
SRD	FLEN	REW	K	ALPH	НО	ERR	FR#	ART	
BRDGA:BR	331	36	5515	0.72	****	95.85 *****	79.29	36173	95.13
-3687	*****	305	1279821	1.08	****	****	0.26	6.56	
TYPE	PPCD FLO	w (	C P/A	LSI	EL BI	LEN XLAE	XRAB		
3.	1. 3	. 0.80	0.001	78.3	30 ***	*** *****	* *****		
XSID: CODE	SRDL	T PW	ADFA	AHD	чн	EGL	CRWS	Ō	WSEL
XSID:CODE SRD		REW		ALPH	HO	ERR	FR#	VEL	
		400	05.61	1 10	0 20	06 29	70 92	36000	95 20
APPRA:AS	240 246	-130 402	9561 1243845	5.32	0.20	0.00	0.36	3.77	33.20
			KQ XLKQ ** *****						
****					,	<i></i>			
		1111	ים שר חואש∠	RIDGE	COMPIT	アネザエのバタンン	>>>		

<<<<END OF BRIDGE COMPUTATIONS>>>>

===135 CON	VEYANCE I	RATIO (		F RECO		LIMITS = 1.4			
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K				CRWS FR#		WSEL
APPRB:XS -3292	117 117	-166 605	15552 1770739	0.42 5.01	0.07	96.44 0.00	***** 0.20	36000 2.31	96.03
EXITB:XS -599	2693 2693	-67 1224	22055 2157192	0.23 5.53	0.91 0.00	97.36 0.00	****** 0.16	36000 1.63	97.13
===135 CON	VEYANCE F	RATIO	OUTSIDE C "EXIT						
EXITC:XS -444	155 155	-68 1224	22175 4239102	0.10 2.46	0.02 0.00	97.38 0.00	****** 0.11	36000 1.62	97.28
FULVB:FV 0 <<	445	1223	4194812	2.46	0.00	0.00	0.11		
===135 CON			OUTSIDE O	F RECO		LIMITS		,	
XSID:CODE SRD	SRDL FLEN		AREA	VHD	HF	EGL	CRWS FR#	Q VEL	WSEL
	494	735	1562817	3.81	0.26	0.00	0.26		
===255 ATTI	EMPTING F		LASS 3 (6 S3N, LSEL			95.6	0 ·		
	<<< <res< td=""><td>ULTS F</td><td>REFLECTIN</td><td>G THE</td><td>CONSTRI</td><td>CTED FL</td><td>OW FOLLO</td><td>Ŵ&gt;&gt;&gt;&gt;</td><td></td></res<>	ULTS F	REFLECTIN	G THE	CONSTRI	CTED FL	OW FOLLO	Ŵ>>>>	
XSID:CODE SRD	SRDL FLEN		AREA K				CRWS FR#		WSEL
BRDGB:BR	445 *****	0 445	9125 1582543	0.28 1.16	**** ****	95.88 *****	80.12 0.17	36145 3.96	95.60
TYPE PI 3.	PCD FLOW 1. 3.	0.800	P/A 0.026	LSE 95.6	L BLE	N XLA * ****	B XRAB * *****		
XSID:COI ROAD :RG								Q WSEI >>>>	
XSID:CODE SRD	SRDL FLEN						CRWS FR#	Q VEL	WSEL
M(G)	445 453 M(K)	735 K	11185 1579577 Q XLKQ	3.81 XRK	0.01 Q OTI	0.00 EL			97.31

### PIER SCOUR COMPUTATIONS

FOR

FISHING CREEK AT SC 9 IN CHESTER COUNTY (445 FT BRIDGE)
Q100 = 24,800 CFS AWC 10-26-1994

	========= Otoo	24,800 =======	CF 5	AWC		.,,,, <del></del>	.=======	
	•		HYDRAU	LIC VARIA	BLES USED	in CSU EÇ	MOLTANG	[
DIED NUMBER	8	7	6	5	D	С	В	A
PIER NUMBER PIER STATION (FT)	35		. 105	140	175	215	265	305
LOCATION OF PIER	LFP	LFP	LFP	LFP	LFP	MCL	MCR	RFP
Y1: DEPTH (FT)	13.0	17.1	18.1	17.3	16.7	29.4		18.6
V1: VEL. (FPS)	2.8	2.8	2.8	2.8	2.8		4.1	3.0
a: PIER WIDTH (FT)	1.0	1.0	1.0		1.0		1.0	1.0
L: PIER LENGTH (FT)	26.0	26.0	26.0		26.0		26.0	26.0
PIER SHAPE	1	1	1	1.	1 .	. 1	1	1 '
ATTACK ANGLE	0	0	0	0	0	0	0	0
K1 (SHAPE COEF.)	1.10	1.10		1.10	1.10	1.10	1.10	1.1
K2 (ANGLE COEF.)	1.00			1.00		1.00 0.13	1.00	1.0 0.12
FROUDE NO.	0.14	0.12	0.12	0.12	0.12	0.13	0.13	0.14
·				•			•	
•	COMPUTEI	SCOUR DI	EPTHS USI	NG CSU EQI	UATION			{
SCOUR DEPTH (FT)	2.31	2.40	2.42	2.40	2.39	3.01		2.4
MAX SCOUR DEPTH (FT)	2.54	2.64	2.66	2.64	2.63	3.31	3.31	2.7
PIER NUMBER PIER STATION (FT) LOCATION OF PIER	4 340 RFP	3 375 RFP	2 410 RFP			,		
Y1: DEPTH (FT)		18.0	17.8					}
V1: VEL. (FPS)	3.0	3.0	3.0					l
a: PIER WIDTH (FT)		1.0	1.0				•	
L: PIER LENGTH (FT)		26.0	26.0					
PIER SHAPE	1	1	1 0					}
ATTACK ANGLE	0 1.10	0 1.10	1.10					_
K1 (SHAPE COEF.)		1.00						ſ
K2 (ANGLE COEF.)	0.13	0.12	0.12				•	. }
FROUDE NO.	0.13	0.12	0.12					ι
	COMPUTE	SCOUR DI	EPTHS USI	NG CSU EQ	UATION			
cooth benefit (50)	2 45	2 46	2 16		•			ſ
SCOUR DEPTH (FT) MAX SCOUR DEPTH (FT)	2.45	2.46 2.71	2.46	,				r
MAX SCOOK DEPIH (FI)	2.09	2.71	2.70					}
								l
								ſ
"MAX SCOUR DEPTH"	includes a	an additi	onal 10	percent o	f the			{
computed CSU scour d					-			•
	-1							ſ

#### CONTRACTION SCOUR COMPUTATIONS

FOR

FISHING	CREEK	ΑT	SC	9	IN	CHESTER	COUNTY	(445 FT BRIDGE)
	Q100 =	= 2	4,8	00	CFS	3	AWC	10-26-1994

### LIVE-BED SCOUR COMPUTATIONS

	MAIN CHANNEL	CONT	RACTED SECTION
DISCHARGE (CFS)	18486.		10443.
BOTTOM WIDTH (FT)	109.0		88.0
• •	0.040		0.040
MANNINGS n			0.040
AVERAGE DEPTH (FT)	28.2	•	
ENERGY SLOPE		0.000	55
D50 (FT)		0.003	2 ·
FALL VELOCITY (FPS)		0.04	
K1 COEF.		0.69	
K2 COEF.		0.37	
COLUMN DEPOSIT AS COMMUNICATION	DD ADAMTAN (DE)	_	20.1
COMPUTED DEPTH AT CONTRACT	ED SECTION (FT)	_	20.1
DEPTH AT MAIN CHANNEL (FT)		<b>3</b> 2	28.2
DEPTH OF CONTRACTION SCOUR	(FT)	=	-8.1
			•

# LEFT OVERBANK IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	7258.
WIDTH OF CONTRACTED SECTION (FT)	=	153.0
MEDIAN GRAIN SIZE (FT)	=	0.0013
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	_	23.6
AVERAGE FLOOD PLAIN DEPTH (FT)	=	17.1
DEPTH OF CONTRACTION SCOUR (FT)	=	6.5

# RIGHT OVERBANK IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	7098.
WIDTH OF CONTRACTED SECTION (FT)	=	132.0
MEDIAN GRAIN SIZE (FT)	=	0.0013
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	26.2
AVERAGE FLOOD PLAIN DEPTH (FT)	=	17.1
DEPTH OF CONTRACTION SCOUR (FT)	=	9.1

### ABUTMENT SCOUR COMPUTATIONS

FOR

FISHING CREEK AT SC 9 IN CHESTER COUNTY
Q100 = 24,800 CFS AWC

(445 FT BRIDGE)

10-26-1994

# RIGHT ABUTMENT SCOUR COMPUTATIONS

ABUTMENT TYPE DISCHARGE BLOCKED BY ABUTMENT (CFS) AREA BLOCKED BY ABUTMENT (SQ FT) DEPTH OF FLOW AT ABUTMENT (FT) LENGTH OF ABUT. 90 DEG. TO FLOW (FT) ABUTMENT SKEW (DEG)	3 -SPILL THROUGH 414. 474.0 17.8 57.0	
AJUSTED ABUTMENT LENGTH (FT) AVERAGE F/P VELOCITY U/S OF ABUT. (FPS) FROUDE NUMBER K1 COEF. K2 COEF.	26.6 0.9 0.036 0.6 1.0	
DESIGN DEPTH OF SCOUR (FROELICH EQUATION	N, 1989) (FT) =	21.

#### PIER SCOUR COMPUTATIONS

FOR (445 FT BRIDGE) FISHING CREEK AT SC 9 IN CHESTER COUNTY Q500 = 36,000 CFS AWC 10-26-1994 ____ HYDRAULIC VARIABLES USED IN CSU EQUATION 
 PIER NUMBER
 8
 7
 6
 5
 D
 C
 B
 A

 PIER STATION (FT)
 35
 70
 105
 140
 175
 215
 265
 305

 LOCATION OF PIER
 LFP
 LFP
 LFP
 LFP
 MCL
 MCR
 RFP

 Y1: DEPTH (FT)
 17.9
 22.0
 23.0
 22.2
 21.6
 34.3
 34.3
 23.5

 V1: VEL. (FPS)
 4.4
 4.4
 4.4
 4.4
 4.9
 4.9
 3.7

 a: PIER WIDTH (FT)
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 < D . 7 В 8 6 5 COMPUTED SCOUR DEPTHS USING CSU EQUATION SCOUR DEPTH (FT) 2.92 MAX SCOUR DEPTH (FT) 3.21 3.00 3.32 3.32 3.00 3.02 3.01 2.81 3.65 3.32 3.31 3.30 3.65 3.09 3.31 HYDRAULIC VARIABLES USED IN CSU EQUATION 4 3 2 PIER NUMBER 

 PIER NUMBER
 4
 5
 2

 PIER STATION (FT)
 340
 375
 410

 LOCATION OF PIER
 RFP
 RFP
 RFP

 Y1: DEPTH (FT)
 22.2
 22.9
 22.7

 V1: VEL. (FPS)
 3.7
 3.7
 3.7

 a: PIER WIDTH (FT)
 1.0
 1.0
 1.0

 L: PIER LENGTH (FT)
 26.0
 26.0
 26.0

 PIER SHAPE
 1
 1
 1

 ATTACK ANGLE
 0
 0
 0

 V1 (SUARE CORE )
 1
 1.0
 1.10

#### COMPUTED SCOUR DEPTHS USING CSU EQUATION

0.14

SCOUR DEPTH (FT) 2.79 2.80 MAX SCOUR DEPTH (FT) 3.07 3.08 2.80 3.08

0.14

K1 (SHAPE COEF.) K2 (ANGLE COEF.)

FROUDE NO.

"MAX SCOUR DEPTH" includes an additional 10 percent of the computed CSU scour depth as recommended in HEC 18

0 0 0 1.10 1.10 1.10 1.00 1.00 1.00

0.14

### CONTRACTION SCOUR COMPUTATIONS

FOR

FISHING CREEK AT SC 9 IN CHESTER COUNTY (445 FT BRIDGE) Q500 = 36,000 CFS AWC 10-26-1994

____

	LIVE-BED SC	COUR COMPUTATIONS
DISCHARGE (CFS) BOTTOM WIDTH (FT) MANNINGS n AVERAGE DEPTH (FT)	MAIN CHANNEL 25271. 109.0 0.040 28.0	CONTRACTED SECTION 14450. 88.0 0.040
ENERGY SLOPE D50 (FT) FALL VELOCITY (FPS) K1 COEF. K2 COEF.		0.00450 0.0032 0.42 0.69 0.37
COMPUTED DEPTH AT CONTRACT DEPTH AT MAIN CHANNEL (FT) DEPTH OF CONTRACTION SCOUR		= 20.1 = 28.0 = -7.9
CLEA		NK IN BRIDGE OPENING CTION SCOUR COMPUTATIONS
DISCHARGE IN CONTRACTED SE WIDTH OF CONTRACTED SECTION MEDIAN GRAIN SIZE (FT)		= 10942. = 153.0 = 0.0013
COMPUTED DEPTH OF CONTRACT AVERAGE FLOOD PLAIN DEPTH DEPTH OF CONTRACTION SCOUP	(FT)	) = 33.5 = 22.3 = 11.2
CLEA	RIGHT OVERBAI AR-WATER CONTRAC	NK IN BRIDGE OPENING CTION SCOUR COMPUTATIONS
DISCHARGE IN CONTRACTED SE WIDTH OF CONTRACTED SECTION MEDIAN GRAIN SIZE (FT)	N (FT)	= 10753. = 132.0 = 0.0013
COMPUTED DEPTH OF CONTRACT AVERAGE FLOOD PLAIN DEPTH DEPTH OF CONTRACTION SCOUP	(FT)	) = 37.4 = 22.3 = 15.1

#### ABUTMENT SCOUR COMPUTATIONS

FOR

FISHING CREEK AT SC 9 IN CHESTER COUNTY

10-26-1994

Q500 = 36,000 CFS

AWC

.......

(445 FT BRIDGE)

#### RIGHT ABUTMENT SCOUR COMPUTATIONS

ABUTMENT TYPE	3 -SPILL THROUGH
DISCHARGE BLOCKED BY ABUTMENT (CFS)	956.
AREA BLOCKED BY ABUTMENT (SQ FT)	971.0
DEPTH OF FLOW AT ABUTMENT (FT)	22.7
LENGTH OF ABUT. 90 DEG. TO FLOW (FT)	94.0
ABUTMENT SKEW (DEG)	0
AJUSTED ABUTMENT LENGTH (FT)	42.8
AVERAGE F/P VELOCITY U/S OF ABUT. (FPS)	1.0
FROUDE NUMBER	0.036
K1 COEF.	0.6
K2 COEF.	1.0
DESIGN DEPTH OF SCOUR (FROELICH EQUATIO	N, 1989) (FT) = 27.6

	П
	[]

ı			
			L,}
			, П
			LJ
		•	
			<u></u>
			П
	•		



### United States Department of the Interior

U.S. GEOLOGICAL SURVEY

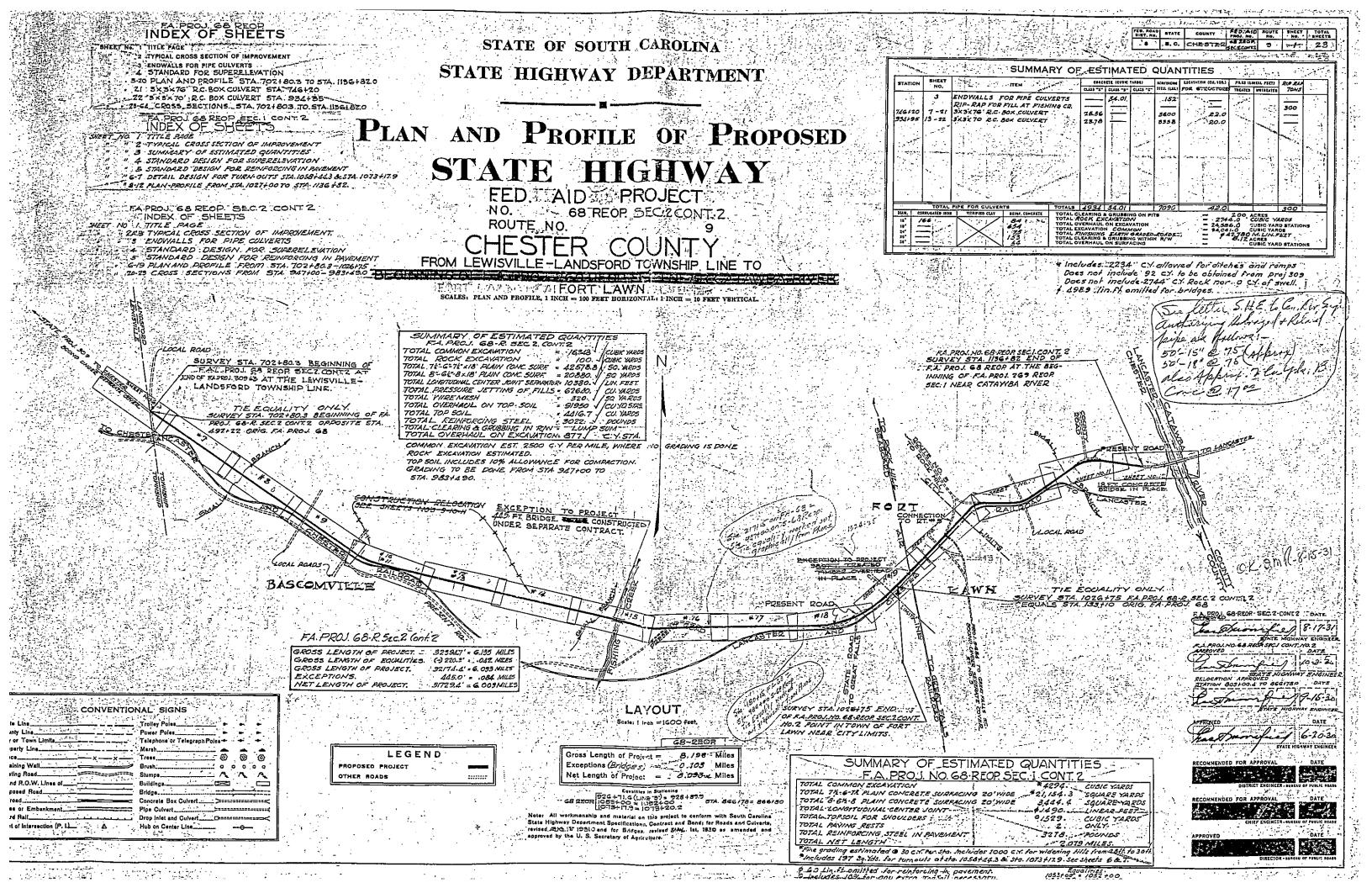
Water Resources Division Stephenson Center, Suite 129 720 Gracern Road Columbia, SC 29210-7651

November 2, 1994

William H. Hulbert, P.E. Hydraulic Engineer South Carolina Department of Transportation 955 Park Street Columbia, South Carolina 29202

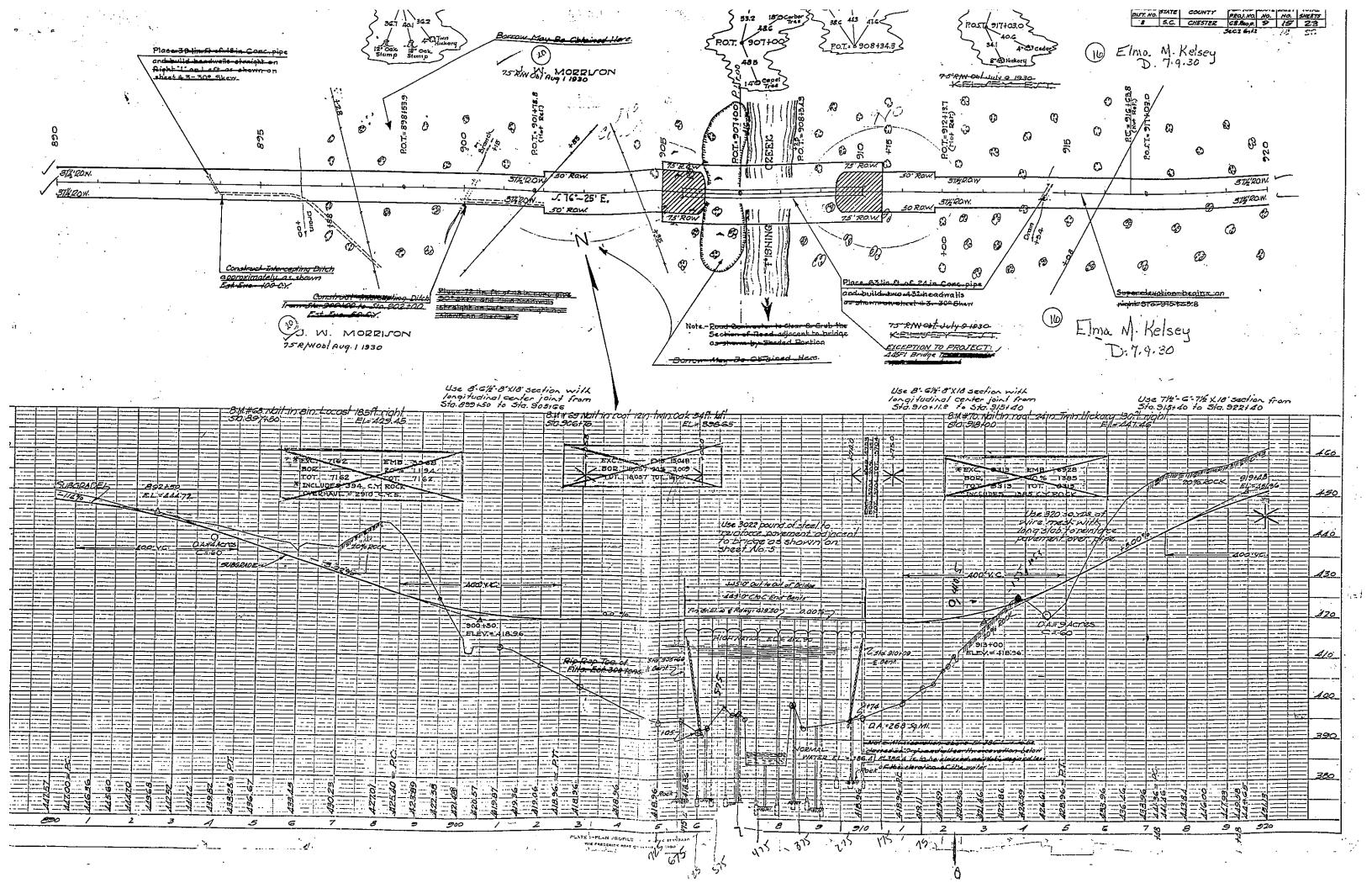
Dear Mr. Hulbert:

We are pleased to transmit to you another report of the Level II Bridge Scour Program titled, "Level II bridge scour analysis for structure 124000901100 on Route SC 9, crossing Fishing Creek in Chester County, South Carolina," by Andy W. Caldwell and Michael G. Zalants. The technical aspects have been reviewed by the South Carolina District Surface-Water Specialist and the report has been approved by the South Carolina District Reports Specialist.

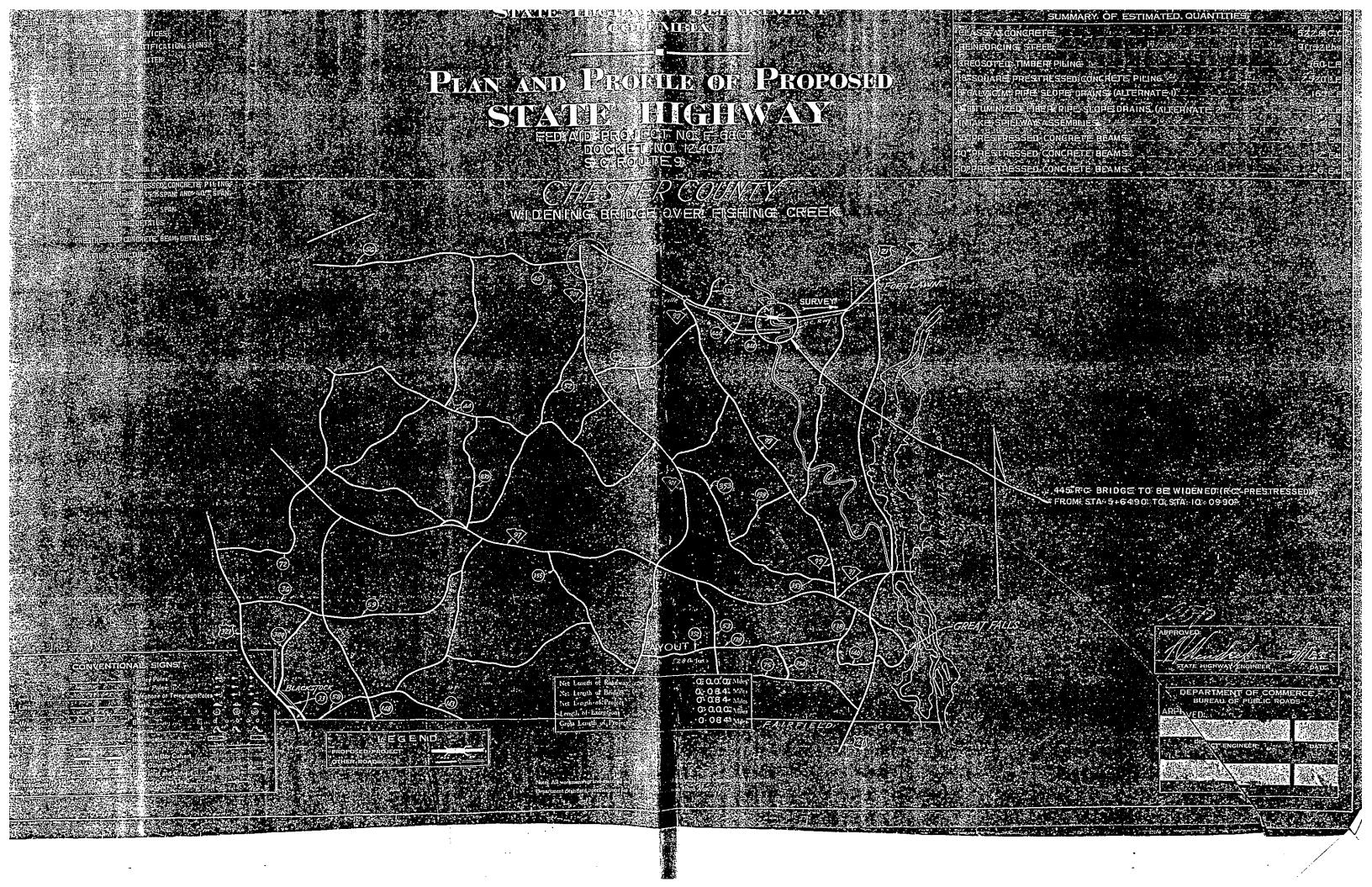

If you have any questions concerning this report please contact me (750-6101) or Michael G. Zalants (750-6159) and we will be glad to assist you.

Sincerely,

Andy W. Caldwell Civil Engineer


Enclosure






<b>6</b> 17 4	٠,

.



					ס ג פ
			,		
	·				
					,
				• • •	
·					



	· ·	
the of the other		· · · · · · · · · · · · · · · · · · ·
		! :
		·
		••
		·
		·

•

.

•

			eoe 78e Teers en Teers en Teers en Teers en Teers en	
			IBENT.  z shown for  u.ly. tinol  sto se show  in plans  in plans  in des me	
			ENGINEE  Since the Since the Scomust  tor the shi d be shi d advisabi	
			R:  nt (New p  supers,  ngths, 12  also, 12  bents : Ti  itled slig,  le by the	
			ortion) trustive the bents the lacation the	Dealth A
		100	\$	Q 00
			Posts, rel Fixed & e shall make existing	e € fleadw.
			uls & Post exponsión ch fixed heoms	O
		Have Sign Sign Sign Sign Sign Sign Sign Sign	hoses ""  sends of  sexponsi  ""  ""  ""  ""  ""  ""  ""  ""  ""	0 0 0 0 0
1974.5   Sale   94.50   Sole   94.50			not Gavin news teen gu ends	CE Surve
### Colors   19   19   19   19   19   19   19   1				RE9.
TOTALS   522.0   91.52   500   220   653   5   5   5   5   5   5   5   5   5		Ven Fo 7 Property of the Control of	1 5 0 20 5 0	
107.0 E			Fishing Geek	S Light Creek
107ALS   522.A   91.52   560   200   165%   41.55%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   54.5%   5		### FILES & ### PER		536 20 £
70.70LS				(i830)
### ### ##############################		610.23 V 610.23 V 610.03 V 610.00 V 610	35° 0° 5	
	e de la companya de	Scale 2 (19) (19) (19) (19) (19) (19) (19) (19)	LIN End Be Int Bei 75° End 35° Int 40° Int 50° Int Corb	Sastrocus (Sastrus)
			TEM  ITS 2.8  A-D  Spans Spans Spans Spans TatAls	
### 191.52   560   2.520   765   74   1.54   1.72   7.66   2.5    ### 152   560   2.520   765   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	The solution of the solution o	No. Class Concra C. Y. 7. 57 4. 86 2. 62 7. 200 2. 64 1. 39 2. 522	0 1 2 2 2 4 1 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Section 1 Sectio	and the second s	
### CONTROLLS WATER  #### CONTROLLS WATER  ###################################		REV. REW. REW. REW. REW. REW. REW. REW. REW	IMMARY (   Greesoteol     Frimber     Frimber     Frimber     560     560     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7	)
THE STATE HIGHWAY DEPARTMENT 450    17		OF TO	PE QUANT Prest Coc R Pure Sol 1.584 936 252a	
Construction 5 2 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4		SO STAN PLAN OVER NO. 1 OVER NO. 2 OVER NO.	ITJE S.  ITJE S.  Interpretation of the property of the proper	38 20 - TO 170
### ### ### ### ### #### #############	er family and the	Variation of the second control of the secon	Ke 35 Prest org Caprest Spies & Bearns Spies & Edr 12 42 44	Constru Ed Sig ort Lawre
6 6 6 460 460 460 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 60 1 4 6		DEPARTMENT OF THE PROVE ENGINEERS OF THE PROV	# AD Process # Concrete # Early   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/	ent flagge
		A 4 4 A A A A A A A A A A A A A A A A A	20 Prests 20 Pre	
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		9000 9000 9000 9000 9000 9000 9000 900	Control of the Contro	

•	)		ac was was
	,		
	·		
	•		
	•		

	345 6 7 3 18 7 5 F P   F R S A B   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7 D   6 7	
전통 등 등 등 등 전체 변경 (1) 등 교통 출시에 위한 기업을 가득하는 경기를 받는 것으로 함께 되었다. 그는 그 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등		
		[ 변경 ^프 용하는 리를 마시 그 10 10 10 10 10 10 10 10 10 10 10 10 10
	Flow of Street, Street	
	Lieking in direction of stolling)	
	Original Blads Grand Mis. No. On Single Mis. 17.4.70 (25.7.1.7.2.1.7.4.2.8.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
2 2 47.698 35.772 19.22 N 2 2 3 47.698 457.57 19.37 A 3	17134 15732 7612 5 2 1717 76 1572 J. 204 17134 15702 1737 5 3 37486 17564 1532	
2 2 47531 45677 T&82 A 5	4,74,30	
3	4661945456 T53 6 2 4750645713 7793 46619456 T53 6 2 4750645713 7793 4661945372 T247 6 4573645722 7727	
22/23 49655 1788 B 4 4 2/23 49655 1788 B 5 5	4659845706 888 6 W 4747745672 1698 4659845729 889 6 5 47467 45772 1709 465984570 1928 7 6 77487 24702 1385	
2 17789 43 597 7 8 92 C	4,040045678 922 7 7 4755046200 256	
77489 <del>1348</del> 7 2010 C 3 1 1 2 1 2 3 3 3 5 6 6 C 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	### ### ##############################	
	A 17 C 18 C	Notes  Accept as Interesting the except that Elev. File  Except Record Sheet  Mo. 28
	TOUR PETT READ   12   18   14   14   15   16   17   17   17   17   17   17   17	Ho Was checked on Elle Record Sheet  No. 28
y		
		WBB
	Annual Annua Annual Annual Annua Annual Annual Annua	

-			er in the
			(